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FIGURE 1, LATTICE

A material occupying an n-dimensional lattice A
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Sites occupied by atoms of ‘spin’ A or B.
Occupancy of type A at r € Ais a(r) € [0, 1].

The STATE of the material is the function a : A —
0, 1], which also evolves in time.

“We shall obtain a complete solution of the problem

. if we can express the free energy at each point as a
function of the density at that point and of the differences
of density in the neighboring phases, out to a distance
limited by the range over which the molecular forces act”

J.D. van der Waals, 1893



The HELMHOLTZ FREE ENERGY of a state:
E=H-TS

where H = interaction energy, 1" = absolute tempera-
ture, and S = total entropy of mixing.

H(a) = —% Z [JAA(T —rNa(r)a(r’)+

ror’'e\

JBB(r — (1 = a(r)(1 — a(r’)+
TP (r —r")(a(r)(1 = a(r')) + a(r )(1—61(7“»)]-

The J’s (interaction coeff’s) are symmetric,
translation-invariant, anisotropic. Rearranging:

H=- ZJ’I“—T —a(r'))*—

TTEA

D% Z(a(’r )+d Z ) + const.

rel rel
where J(r) = JY(r)+JBB(r) —2J48(r), D = 3" J(r),
and d = Y (JPB(r) — J4(r))/2.
At site r the entropy s(a(r)) for aN particles in N
identical sites is given by

Ns/K _ N!
(aN)(N — aN)!
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where K is Boltzman’s constant.
Hence,

s(a) ~ —Klalna+ (1 —a)In(1 — a)).
The total entropy, S(a) = > .., s(a(r)) and so
Fla)=H —-TS =

Y = )alr) - a(r!))’

+ Z [KT{CL(T) ma(r)+ (1 —a(r))In(l —a(r))}

relA

—D(a(r)* — a(r)) + da(r)].



There is a critical temperature 7. such that for 7" > T,
the term | - - - | is strictly convex and so there is a unique
homogeneous state which minimizes E(a), while for T' <
T, this term has two local minima and so two distinct
a-states (say a < f3) give spatially homogeneous local
minimizers of F/. This is the origin of phase transition in
spin systems (e.g. ferromagnets.)

We will fix T' < T,.. Take continuum limit. This gives
the free energy in the isothermal case of the form

B(u) = [ [ I y)ute) ~u)Pdsdy+ [ Pz

where F'is a double well function, having minima at £1
(after changing variables), and J is assumed to be inte-
grable with positive integral and with J(—x) = J(x).
Compare with G-L functional:
(u(z) —uly)) ~ (r —y) - Vu(z).

IMPORTANT: For several results we de not require
that J be nonnegative.



Evolution
A fundamental principle: A material structure
evolves in such a way that its FREE ENERGY
decreases as quickly as possible. The spatial func-
tion u will evolve in such a way that E(u) decreases, and
does so optimally in some sense. This suggests the evo-

lution law

=~ gradB) ()

grad F(u) € X* is defined by
d
< grad E(u),v >= %E(u + hv)|p=o-
If X = L? then (*) becomes

g—?:J*u—Du—F’(u) (NAC)

where * is convolution and D = [ J is assumed positive.



The operator

Lu(x)EJ*u—u/QJ(x—y)dy

= [ Jie = vutv)dy — ) [ I =)y

Q

has some features in common with the Laplacian.
For example, L1 = 0, and if J > 0 then L is a self adjoint
non-positive operator and a maximum principle holds.

[t appears in equations of materials science, dispersion
of vegetation, mutation, neuroscience and various jump
processes.

It is diffusion-like but it is a bounded operator, unlike
the Lapacian.

We assume

JeCl J>0,Jz) = J(z|), and J(|z]) <O0.



We can consider the system

d
d—?; = duLU + f(U, ’U)
d
d_: = d,Lv + g(u,v)

and ask if Turing patterns emerge from a homogeneous
steady state which is stable under the kinetics, i.e.,

that state becomes unstable when ‘diffusion’ is added
with very different coeflicients.

With the usual requirements on a homogeneous steady
state (p, q), one is directed to consider the spectrum of

Ldiag(d,, d,) + Jac(f, 9)(p, q)-

First we need the spectrum of L, but this is not easy
to find for a general kernel and a general domain.



In the case on {2 = R"
Lou(z) = / J(x — y)uly)dy — u(x)
where f J =1, if we rescale and consider

J(x)=e"J(x/e)

and write

Then one might imagine that as ¢ — 0, L. — A.

Clearly this cannot be true since the difference between
the two operators is an unbounded operator. However,

Lemma (B-Chen-Chmayj, 03, '05)
For all ¢ € H*(R)

L. — cjAp as e — 0,
where c; = [|z]*J(2)/2.

Similarly, on a bounded domain {2 C R" with

La) = [ Tz = y)luly) - ula))dy

the same result was proved by Cortazar, et al in 2008.
In this case A is the Neumann Laplacian.
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Notice that this is pointwise (not operator) convergence
and so it is a nontrivial question to ask if the spectrum

of L. is close to that of ¢;AY.

Actually, it is a trivial question, since the answer is NO!
(A bounded set is not close to an unbounded set)

HOWEVER, recall the essentials of the Turing instability:

Dispersion curve

lambda

wave number
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What we need is for each M > 0
o(L:)N[—M,0] = o(c;A)N[—=M,0] as e — 0.

Lemma 1 Given a compact subset © C p(c;AYN), there
exists €g > 0 such that © C p(L.) if € < €g.

The proof is by contradiction: Assume there is a sequence

e, — 0 and A\ € © so that for each k, there is a sequence
{v]}; C 1+ for which

[(Le, = ML)vj] = 0 as j — oo

Do some work to get v], — wy, as j — 0o, obtaining

1
(Lo, = MeDyo] < -

Now show convergence of {wy} and use L. — ¢;A and
get a contradiction.
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Proposition 0.1 Assume that © C p(L.) N p(c;AY)
for all € < eg, where © C C s compact. Then there
exist @ > 0 and €g > 0 such that

M —=L) <0 forall N€©, e<eo.

Furthermore, (AN — L) "'u — (M —c;AN) "ty strongly
in L*(Q) as € — 0, for each v € L*(Q2), uniformly in
A€ O.

Theorem 1 Assume that u € o(c;AY) and let By =
AN e C | |A—p| <48 withd > 0 so small that
Bs N a(c;AY) = {u}. Then there exists e5 > 0 such
that Bs N o(L.) # @ and Bs N o(L:) C o4(Le) for
all € < e5. Furthermore, if dimker(ul — c;AY) = m
then L.(e < €5) has at most m isolated eigenvalues
ps € Bs(1 < 5 < m) with total multiplicity equal to
m.

The proof uses ideas from Kato, including the contour
integral representation of spectral projection operators,
the proposition above, and the convergence of the nonlo-
cal operator to the Laplacian, among other things.
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TURING PATTERNS

Consider the following system for d > 1

p
% — /YLE/U’ + f(u,v),

gt (1)

— =dyL.v+g(u,v) in Qx][0,00).
\ Ot

We assume that (p, ¢)! € R? is a stable homogeneous
equilibrium of the kinetic system, that is, f(p,q) = g(p, q) =
0 and Jac(f, g)(p,q) has two eigenvalues with negative
real parts. We also assume that f, g € C*™(R? R) for
some # € (0,1). © C R" is a bounded domain with
smooth boundary, and v > 0 is a spatial scale factor.
Linearizing around (p, q)! gives

o (o) = (0) Ci) (o oo (2).

(2)

2\

Let
A.=+vDL.+ B (3)

where
o=(s3) ==(yita)
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Following Sander and Wanner (JDE '03) we impose the
Turing conditions for local diffusion:

(HD) fulpg >0, trB = (fu+ 90)lpg <O
(H2) detB = (fugs — fog)lpg) > 0.

(H3) (fu+ 90)* — 4(fugo — fogu)l ) > 0.
(H4) (dfu + 9v)|(pq) > 0.

(H5) (dfu+ gv)* — 4d( fugs — fogu)lpg > 0.

Set
C(s) =B+ sD.

det[C(s) — M| = A* — b(s)\ + c(s),
where b(s) = (fu + gv)|(p.g) + 5(1+d),
C(‘S) — (fugv - fvgu)‘(p,q) + S(dfu + gv)\(qu) + ds®.

s — A(s) such that detC'(s) = 0 has two real branches
A7 (s) < AT(s) for all s <0.

A~ (s) is strictly increasing

AT (0) < 0, A"(s) has a unique maximum A! _ attained
at some Sy < 0.

Note that s stands for the spectral parameter from v L.
and so s < 0 is what concerns us.
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lambda

Dispersion curve
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For the Schnakenberg system with nonlocal diffusion:

u(0,x), epsilon =.08 u(.1,x) u(.2,x) u(.5,x)
1.02 1.02 1.02 1.02
2 1.01 2 1.01 2 1.01 2 1.01
© © © [
5 5 5 5
1 MANAANVAMAA M 1 1 1
-1 0 1 -1 0 1 -1 0 1 -1 0 1
X—axis X—axis X—axis X—axis
v(0,x) v(.1,x) v(.2,X) v(.5,X)
1 1 1 1
2 0.99 2 0.99 2 0.99 2 0.99
4] © © ©
1 i i IO
0.98 0.98 0.98 0.98
-1 0 1 -1 0 1 -1 0 1 1 0 1
X—axis X—axis X—axis X—axis
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Other results

Sander-Tatum (ejde 2013) have results for local /nonlocal
systems. They assume €2 is a rectangle in 2, 3, or 4 di-
mensions and that J is given as a Fourier series. There
is some scaling but I have not understood it:

e’J(z) — K(z) as € — 0 but there does not seem to
be a description of how J depends on €, otherwise. Here
60 < 1 and so this is certainly not our situation and it
seems that effectively, J becomes relatively negligible as
e — 0.

Hutt and Atay: Spatio-temporal patterns in systems
with space-dependent time delays. Related to earlier
work of Ermentrout, et al.

Viana, Silva, Lopes: One dimensional chain of oscilla-
tors.
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