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Sites occupied by atoms of ‘spin’ A or B.
Occupancy of type A at r ∈ Λ is a(r) ∈ [0, 1].

The STATE of the material is the function a : Λ →
[0, 1], which also evolves in time.

“We shall obtain a complete solution of the problem
... if we can express the free energy at each point as a
function of the density at that point and of the differences
of density in the neighboring phases, out to a distance
limited by the range over which the molecular forces act”
J.D. van der Waals, 1893
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The HELMHOLTZ FREE ENERGY of a state:

E = H − TS

where H = interaction energy, T = absolute tempera-
ture, and S = total entropy of mixing.

H(a) ≡ −1

2

∑
r,r′∈Λ

[
JAA(r − r′)a(r)a(r′)+

JBB(r − r′)(1− a(r))(1− a(r′))+

JAB(r − r′)(a(r)(1− a(r′)) + a(r′)(1− a(r)))

]
.

The J ’s (interaction coeff’s) are symmetric,
translation-invariant, anisotropic. Rearranging:

H =
1

4

∑
r,r′∈Λ

J(r − r′)(a(r)− a(r′))2−

D
1

2

∑
r∈Λ

(a(r)2 − a(r)) + d
∑
r∈Λ

a(r) + const.

where J(r) = JAA(r)+JBB(r)−2JAB(r), D =
∑
J(r),

and d =
∑

(JBB(r)− JAA(r))/2.
At site r the entropy s(a(r)) for aN particles in N

identical sites is given by

eNs/K =
N !

(aN)!(N − aN)!
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where K is Boltzman’s constant.
Hence,

s(a) ' −K[a ln a + (1− a) ln(1− a)].

The total entropy, S(a) =
∑

r∈Λ s(a(r)) and so

E(a) = H − TS =

1

4

∑
r,r′∈Λ

J(r − r′)(a(r)− a(r′))2

+
∑
r∈Λ

[
KT{a(r) ln a(r) + (1− a(r)) ln(1− a(r))}

−D(a(r)2 − a(r)) + da(r)
]
.
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There is a critical temperature Tc such that for T ≥ Tc
the term [ · · · ] is strictly convex and so there is a unique
homogeneous state which minimizes E(a), while for T <
Tc, this term has two local minima and so two distinct
a-states (say α < β) give spatially homogeneous local
minimizers of E. This is the origin of phase transition in
spin systems (e.g. ferromagnets.)

We will fix T < Tc. Take continuum limit. This gives
the free energy in the isothermal case of the form

E(u) =
1

4

∫∫
J(x−y)(u(x)−u(y))2dxdy+

∫
F (u)dx,

where F is a double well function, having minima at ±1
(after changing variables), and J is assumed to be inte-
grable with positive integral and with J(−x) = J(x).
Compare with G-L functional:
(u(x)− u(y)) ' (x− y) · ∇u(x).

IMPORTANT: For several results we de not require
that J be nonnegative.
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Evolution

A fundamental principle: A material structure
evolves in such a way that its FREE ENERGY
decreases as quickly as possible. The spatial func-
tion u will evolve in such a way that E(u) decreases, and
does so optimally in some sense. This suggests the evo-
lution law

∂u

∂t
= − gradE(u) (*)

grad E(u) ∈ X∗ is defined by

< grad E(u), v >=
d

dh
E(u + hv)|h=0.

If X = L2 then (*) becomes

∂u

∂t
= J ∗ u−Du− F ′(u) (NAC)

where * is convolution and D =
∫
J is assumed positive.
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The operator

Lu(x) ≡ J ∗ u− u
∫

Ω

J(x− y)dy

≡
∫

Ω

J(x− y)u(y)dy − u(x)

∫
Ω

J(x− y)dy

has some features in common with the Laplacian.
For example, L1 = 0, and if J ≥ 0 then L is a self adjoint
non-positive operator and a maximum principle holds.

It appears in equations of materials science, dispersion
of vegetation, mutation, neuroscience and various jump
processes.

It is diffusion-like but it is a bounded operator, unlike
the Lapacian.

We assume

J ∈ C1
c , J 
 0, J(z) = J̃(|z|), and J̃ ′(|z|) ≤ 0.
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We can consider the system

du

dt
= duLu + f (u, v)

dv

dt
= dvLv + g(u, v)

and ask if Turing patterns emerge from a homogeneous
steady state which is stable under the kinetics, i.e.,
that state becomes unstable when ‘diffusion’ is added
with very different coefficients.

With the usual requirements on a homogeneous steady
state (p, q), one is directed to consider the spectrum of

Ldiag(du, dv) + Jac(f, g)(p, q).

First we need the spectrum of L, but this is not easy
to find for a general kernel and a general domain.
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In the case on Ω = Rn

L0u(x) ≡
∫
Rn
J(x− y)u(y)dy − u(x)

where
∫
J = 1, if we rescale and consider

Jε(x) ≡ ε−nJ(x/ε)

and write

Lεu(x) ≡ 1

ε2
[Jε ∗ u− u]

Then one might imagine that as ε→ 0, Lε → ∆.

Clearly this cannot be true since the difference between
the two operators is an unbounded operator. However,

Lemma (B-Chen-Chmaj, ’03, ’05)
For all φ ∈ H2(R)

Lεφ→ cJ∆φ as ε→ 0,

where cJ =
∫
|z|2J(z)/2.

Similarly, on a bounded domain Ω ⊂ Rn with

Lεu(x) ≡ 1

ε2

∫
Ω

Jε(x− y)(u(y)− u(x))dy

the same result was proved by Cortazar, et al in 2008.
In this case ∆ is the Neumann Laplacian.
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Notice that this is pointwise (not operator) convergence
and so it is a nontrivial question to ask if the spectrum
of Lε is close to that of cJ∆N .

Actually, it is a trivial question, since the answer is NO!
(A bounded set is not close to an unbounded set)

HOWEVER, recall the essentials of the Turing instability:

0

0

Dispersion curve

wave number

la
m

b
d
a
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What we need is for each M > 0

σ(Lε) ∩ [−M, 0]→ σ(cJ∆) ∩ [−M, 0] as ε→ 0.

Lemma 1 Given a compact subset Θ ⊂ ρ(cJ∆N), there
exists εΘ > 0 such that Θ ⊂ ρ(Lε) if ε ≤ εΘ.

The proof is by contradiction: Assume there is a sequence
εk → 0 and λk ∈ Θ so that for each k, there is a sequence
{vjk}j ⊂ 1⊥ for which

‖(Lεk − λkI)vjk‖ → 0 as j →∞.

Do some work to get vjk → wk as j →∞, obtaining

‖(Lεk − λkI)wk‖ ≤
1

k
.

Now show convergence of {wk} and use Lε → cJ∆ and
get a contradiction.
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Proposition 0.1 Assume that Θ ⊂ ρ(Lε) ∩ ρ(cJ∆N)
for all ε ≤ εΘ, where Θ ⊂ C is compact. Then there
exist θ > 0 and εΘ > 0 such that

‖(λI − Lε)−1‖ ≤ θ for all λ ∈ Θ, ε ≤ εΘ.

Furthermore, (λI−Lε)−1u→ (λI−cJ∆N)−1u strongly
in L2(Ω) as ε → 0, for each u ∈ L2(Ω), uniformly in
λ ∈ Θ.

Theorem 1 Assume that µ ∈ σ(cJ∆N) and let Bδ =
{λ ∈ C | |λ − µ| ≤ δ} with δ > 0 so small that
Bδ ∩ σ(cJ∆N) = {µ}. Then there exists εδ > 0 such
that Bδ ∩ σ(Lε) 6= ∅ and Bδ ∩ σ(Lε) ⊂ σd(Lε) for
all ε ≤ εδ. Furthermore, if dim ker(µI − cJ∆N) = m
then Lε(ε ≤ εδ) has at most m isolated eigenvalues
µεj ∈ Bδ(1 ≤ j ≤ m) with total multiplicity equal to
m.

The proof uses ideas from Kato, including the contour
integral representation of spectral projection operators,
the proposition above, and the convergence of the nonlo-
cal operator to the Laplacian, among other things.
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TURING PATTERNS

Consider the following system for d > 1
∂u

∂t
= γLεu + f (u, v),

∂v

∂t
= dγLεv + g(u, v) in Ω× [0,∞).

(1)

We assume that (p, q)T ∈ R2 is a stable homogeneous
equilibrium of the kinetic system, that is, f (p, q) = g(p, q) =
0 and Jac(f, g)(p, q) has two eigenvalues with negative
real parts. We also assume that f, g ∈ C2+θ(R2,R) for
some θ ∈ (0, 1). Ω ⊂ Rn is a bounded domain with
smooth boundary, and γ > 0 is a spatial scale factor.
Linearizing around (p, q)T gives

∂

∂t

(
u
v

)
=

(
1 0
0 d

)(
γLεu
γLεv

)
+

(
fu(p, q) fv(p, q)
gu(p, q) gv(p, q)

)(
u
v

)
.

(2)

Let
Aε = γDLε + B (3)

where

D =

(
1 0
0 d

)
, B =

(
fu(p, q) fv(p, q)
gu(p, q) gv(p, q)

)
.
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Following Sander and Wanner (JDE ’03) we impose the
Turing conditions for local diffusion:

(H1) fu|(p,q) > 0, trB = (fu + gv)|(p,q) < 0.

(H2) detB = (fugv − fvgu)|(p,q) > 0.

(H3) (fu + gv)
2 − 4(fugv − fvgu)|(p,q) > 0.

(H4) (dfu + gv)|(p,q) > 0.

(H5) (dfu + gv)
2 − 4d(fugv − fvgu)|(p,q) > 0.

Set
C(s) = B + sD.

det[C(s)− λI ] = λ2 − b(s)λ + c(s),

where b(s) = (fu + gv)|(p,q) + s(1 + d),
c(s) = (fugv − fvgu)|(p,q) + s(dfu + gv)|(p,q) + ds2.

s→ λ(s) such that detC(s) = 0 has two real branches
λ−(s) < λ+(s) for all s ≤ 0.

λ−(s) is strictly increasing

λ+(0) < 0, λ+(s) has a unique maximum λ+
max attained

at some smax < 0.

Note that s stands for the spectral parameter from γLε
and so s ≤ 0 is what concerns us.
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For the Schnakenberg system with nonlocal diffusion:
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Other results

Sander-Tatum (ejde 2013) have results for local/nonlocal
systems. They assume Ω is a rectangle in 2, 3, or 4 di-
mensions and that J is given as a Fourier series. There
is some scaling but I have not understood it:

εθJ(x) → K(x) as ε → 0 but there does not seem to
be a description of how J depends on ε, otherwise. Here
θ < 1 and so this is certainly not our situation and it
seems that effectively, J becomes relatively negligible as
ε→ 0.

Hutt and Atay: Spatio-temporal patterns in systems
with space-dependent time delays. Related to earlier
work of Ermentrout, et al.

Viana, Silva, Lopes: One dimensional chain of oscilla-
tors.
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